Modelling Customer Churn using LightGBM

Go to Top

References

Load the libraries

Go to Top

Colab

Useful Scripts

Go to Top

Load the Data

Go to Top

Data Processing

Go to Top

Data Processing

Modelling

Go to Top

lgb.LGBMClassifier(
    boosting_type     = 'gbdt',
    num_leaves        = 31,
    max_depth         = -1,
    learning_rate     = 0.1,
    n_estimators      = 100,
    subsample_for_bin = 200000,
    objective         = None,
    class_weight      = None,
    min_split_gain    = 0.0,
    min_child_weight  = 0.001,
    min_child_samples = 20,
    subsample         = 1.0,
    subsample_freq    = 0,
    colsample_bytree  = 1.0,
    reg_alpha         = 0.0,
    reg_lambda        = 0.0,
    random_state      = None,
    n_jobs            = -1,
    silent            = True,
    importance_type   = 'split',
    **kwargs,
)

LightGBM HPO Using Hyperopt

Tune boosting type with best params

Model Evaluation

Go to Top

Model Interpretation

Analyze misclassified examples

Time Taken

Go to Top