Bhishan Poudel, Ph.D. Candidate

Data Scientist

Linkedin GitHub twitter stackoverflow



NOTE:
If the links are NOT expanded when clicking on them (e.g. on Chrome, Firefox, Brave, etc.), please scroll down to the second part, where I have included all the expanded links which can be clicked and opened.


Chapter: Personal Module For Data Analysis: bp


Personal Module: bp

A01: What does the Module Do? (GIF videos)
API usage api.gif
Data Visualization plots.gif
Data Visualization using Plotly plotly.gif
Statistics stats.gif
Model Evaluation model_eval.gif
Time Series Analysis timeseries.gif
Miscellaneous Usage misc.gif
A02: Detailed Use of Module bp (Jupyter Notebooks)

Data Description

Data Visualization

Data Visualization using Plotly

EDA using Plotly

Miscellaneous Plots

Matplotib Styles

Deal with Colors

Statistics

Timeseries Analysis

Model Evaluation


Chapter 1: Data Science Projects


Section A: Regression

A01: King County Seattle House Price Prediction (Regression)

GitHub

README

Statistics Report

a01 Data Processing

a02 Data processing Script

a03 Regression Statistics

a04 Regression EDA

a05 Regression EDA: bokeh

a06 Regression EDA: plotly

a07 Regression EDA: pixiedust

a08 Regression EDA: pandas profiling

b01 Regression Modelling (Boosting): Hist Gradient Boosting

b02 Regression Modelling (Boosting): XGBoost

b03 Regression Modelling (Boosting): LightGBM

b04 Regression Modelling (Boosting): CatBoost

e01 Regression Modelling (Ensemble): Stacking and Blending

m01 Regression Modelling (sklearn): linear and polynomial regression

m02 Regression Modelling (sklearn): sklearn methods

m03 Regression Modelling (sklearn): Random Forest

m04 Regression Modelling (statsmodels): linear OLS

s01 Regression Modelling (Special): pycaret

s02 Feature Engineering (Featuretools): XGBoost

s03 Feature Engineering (Featuretools): LightGBM

s04 Feature Engineering (Featuretools): CatBoost

w01 Model Interpretation: Yellowbrick, Lime, Eli5

w02 Model Interpretation: What If Tool (WIT)

w03 Model Interpretation: Dalex

w04 Model Interpretation: Dtreeviz

x01 Big Data Analysis: PySpark

x02 Big Data Analysis: PySpark Random Forest Tuning

y01 DeepLearning: Keras

z01 Best Model: CatBoost

z02 Best Model: XGBoost

z03 Best Model: Overall

A02: All State Insurance (Insurance: Regression)

GitHub

README

a01 Exploratory Data Analysis

a02 Data Processing

b01 Modelling

b02 Modelling Pyspark


Section B: Classification

BX.01: Fraud Detection (Binary Classification)

GitHub

README

Deploy End to End Machine Learning Model (Fraud Detection) on Heroku

a01 Classification EDA

a02 Classification Statistics

b01a Classification Modelling (Boosting): XGBboost

b01b Classification Modelling (Boosting): XGBboost (HPO)

b01c Classification Modelling (Boosting): XGBboost Custom Loss

b02 Classification Modelling (Boosting): LightGBM

b03 Classification Modelling (Boosting): Catboost

b03b Classification Modelling (Boosting): Catboost Custom Loss

e01 Classification Modelling (Ensemble): Stacking

m01 Classification Modelling (sklearn): Undersampling

m02 Classification Modelling (sklearn): Logistic Regression SMOTE

m03 Classification Modelling (sklearn): Decision Tree

m04 Classification Modelling (sklearn): Calibrated Classification

b05 Classification Modelling (sklearn): Isolation Forest and LOF

s01 Classification Modelling (Special): pycaret (lda)

s02 Classification Modelling (Special): evalML

x01 Classification Modelling (Big Data): dask

x02 Classification Modelling (Big Data): vaex

x03 Classification Modelling (Big Data): pySpark

y01 Classification Modelling (Deep Learning): keras simple model

y02 Classification Modelling (Deep Learning): keras large model

y03 Classification Modelling (Deep Learning): keras oversampling

y04 Classification Modelling (Deep Learning): keras classifier sklearn api

y05 Classification Modelling (Deep Learning): keras classifier (Keras tuner)

BX.02: Customer Churn (Binary Classification)

GitHub

README

a01 Exploratory Data Analysis

a01 Exploratory Data Analysis (Plolty)

a02 Customer Churn: Data Processing

bx01 Modelling (Boosting): XGBoost with HyperbandCV

bx02 Modelling (Boosting): XGBoost with Bayes Optimization

bl01 Modelling (Boosting): LightGBM Classifier with sklearn pipeline and HyperbandCV

bl02 Modelling (Boosting): LightGBM Classifier with Optuna HPO

bl03 Modelling (Boosting): LightGBM Classifier with Hyperopt HPO

bc01 Modelling (Boosting): CatBoostClassifier with optuna hyperparameter tuning

ml01 Modelling (Sklearn): LogisticRegression

ml02 Modelling (Sklearn): LogisticRegressionCV

splr01 Modelling (Special): (Pycaret) Logistic Regression

spn01 Modelling (Special): (Pycaret) Naive Bayes

spx01 Modelling (Special): (Pycaret) Xgboost

spdla01 Modelling (Special): (Pycaret) Linear Discriminant Analysis

sflr01 Modelling (Special): (featuretools) Logistic Regression

se01 Modelling (Special): (evalml) Built-in Algorithm

w01 Model Interpretation: (What If Tool) Logistic Regression

wbl Model Interpretation: (LOFO) Logistic Regression

w01 Model Interpretation: (Interpret) Builtin Estimators Logistic Regression and Boosting

y01 Deep Learning: (Keras) Sequential Simple Model

BX.03: Porto Seguro Auto Insurance (Binary Classification)

GitHub

README

a01 Exploratory Data Analysis

a02 Modelling: LightGBM

a03 Modelling: XGBoost

a04 Modelling: Keras Entity Embedding

a05 Modelling: Stacking different Models

a06 Feature Selection: Boruta and Target Permutation

BX.04: Breast Cancer Wisconsin (Binary Classification)

GitHub

README

a01 Exploratory Data Analysis

b01 Modlling: (Boosting) XGBoost

y01 Deep Learning: Keras Sequential with class_weight

y02 Deep Learning: Keras Sequential

BY.01: Prudential Insurance (Multiclass Classification)

GitHub

README

a01 Exploratory Data Analysis

a02 Multiclass Classification Statistics

a03 Data Preprocessing

a04 Data Preprocessing Script

b01 Modelling: Linear Regression

b02 Modelling: RF Classifier

b03 Modelling: RF Classifier AUC ROC

b04 Modelling: XGBoost Multiclass Classification

b05 Modelling: XGBoost Linear Regression and Poisson Regression with Offset

c01 Multiclass Model Interpretation: eli5, shap and pdpbox


Section C: Clustering

C01: Clinical Features and Biomarkers Analysis for Diabetes (Clustering)

a01 Data Preparation

a02 Statistical Study of Features

b01 Analysis of Clinical Features

b02 Analysis of Biomarkers

m01 Modelling: Diabetes Classification

m02 Modelling: Clustering

s01 Big Data: Modelling Diabetes Data Using Vaex

C02: Clustering Similar Grocery Items (Clustering)

Clustering Grocery Items

C03: Clustering of Agriculture Data (Clustering)

Clustering of Agriculture Data

C04: Clustering of Multiple Sequence Alignment (MSA) of Covid Samples(Clustering)

Clustering of Covid Samples MSA


Section D: Timeseries Analysis

D01: Timeseries Analysis for Web Traffic Data

GitHub

README

a01 Data Processing

b01 Timeseries visualization and eda

c01 Timeseries statistics

d01 Timeseries modelling: ARIMA

d02 Timeseries modelling: VAR

e01 Timeseries modelling: sklearn

f01 Timeseries modelling: tsfresh and xgboost

g01 Timeseries modelling: fbprophet

g02 Timeseries modelling: fbprophet holidays

h01 Timeseries modelling: deep learning


Section E: Natural Language Processing (NLP)

E01: Twitter Sentiment Analysis (Analytics Vidhya Hackathon: Identify the Sentiment)

GitHub

a00 README

a01 Text Data Processing

a02 Text Data EDA

a03 Scattertext for positive and negative sentiments

a03b Result: Twitter Sentiment Html

b01 Text Data Modelling: BoW + Word2Vec + TF-IDF

b02 Text Data Modelling: TF-IDF + Logistic Regression

c01 Sentiment Analysis: ktrain

c01 Sentiment Analysis: ktrain, neptune

c01 Sentiment Analysis: ktrain, neptune HPO

c02 Sentiment Analysis: simpletransformers + Roberta

d01 Sentiment Analysis: (keras) LSTM

d02 Sentiment Analysis: (keras) GRU, CNN, LSTM

e01 Sentiment Analysis: (transformers) Small data with torch and distilbert

e02 Sentiment Analysis: (transformers): Full data with keras and distilbert

e03 Sentiment Analysis: BERT and Tensorflow

e03 Sentiment Analysis: BERT, Tensorflow, and Neptune

E02: Toxic Comments (Multiclass Text Classification)

GitHub

README

a01 Text Data Processing

a02 Text Data EDA

a03 Text Data EDA: Plotly

m01 Text Data Binary Classification (Toxic or not)

s01 Named Entity Recognition and Dependency Parsing: spacy2

s01 Named Entity Recognition and Dependency Parsing: spacy3

y01 Deep Learning: GRU and Fasttext

y01b Deep Learning: GRU, Fasttext, Badwords

y02 Deep Learning: Transformers PyTorch BERT

y02b Deep Learning: Transformers PyTorch XLNET

y02c Deep Learning: Transformers PyTorch DisltilBert

y03 Bert Client: XGBoost

y03b Bert Client: Keras Sequential

E03: Consumer Complaints (Multiclass Text Classification)

GitHub

README

a01 Text Processing

a02 EDA for Text Data

b01 Text Data Modelling: Tf-idf and Sklearn Classifiers

b02 Text Data Modelling: LinearSVC

c01 Model Evaluation: Yellowbrick

c02 Model Evaluation: scikit-plot

d01 Text Data Modelling: PySpark

e01 Text Data Modelling: simpletransformers


Section F: Insurance Data Modelling

F01: French Motor Claims (Pure Premium Modelling)

GitHub

README

a01 Data Cleaning

b01 Frequency Modelling (Poisson Regressor)

b02 Severity Modelling (Gamma Regressor)

b03 Pure Premium Modelling (Tweedie Regressor)

b04 Tweedie Model vs FrequencySeverity Model

b05 Lorentz Curves Comparison

c01 Xgboost with Tweedie Regression

d01 GAM Linearized Modelling using Pygam


Section G: Financial Data Analysis

G01: Credit Risk (Banking: Financial Modelling (Scorecard))

GitHub

README

a01 EDA for Credit Risk Data

a02 Data Processing

b01 Risk Modelling: PDModel Gini KS CreditScore Scorecard



Chapter 2: SQL

2A: SQLITE Queries for Northwind Database (Book: SQL Practice Problems by Vasilik)

a01 Beginner Level Problems (1-19)

a02 Intermediate Level Problems (20-31)

a03 Advanced Level Problems (32-57)

2B.01: SQL Queries for Hospital Management Database

a01 SQL Queries using postgres

a02 SQL Queries using postgres, sqlalachemy and pandas

a03 SQL Queries using sqlite3

2B.02: SQL Queries for Computer Store Database

a01 SQL Queries using postgres

a02 SQL Queries using sqlite

2B.03: SQL Queries for Employee Management Database

a01 SQL Queries using postgres and pyspark

2B.04: SQL Queries for the Warehouse Database

a01 SQL Queries using postgres

a02 SQL Queries using pyspark and postgres

2B.05: SQL Queries for Movie Theaters Database

a01 SQL Queries using pyspark and postgres

a02 SQL Queries using pyspark and sqlite

2B.06: SQL Queries for Pieces and Providers Database

a01 SQL Queries using postgresql

a02 SQL Queries using pyspark, sqlite and sqlalchemy



Chapter 3: Business Projects

3.01: Spanish Translation A/B Testing

GitHub

README

a01 Spanish Translation A/B Testing with Extensive EDA and Statistical Tests

3.02: Customer Lifetime Value

GitHub

README

a01 Data Cleaning

b01 Modelling: BG/NBD and Gamma-Gamma Distribution

b02 Modelling: Keras Modelling and XGBoost


=========== NOTE: The Section Below is the for the Expanded Version of All the Links Above =========
NOTE:
If we are using Safari, we can expand the collapsible links in above section. But for other browsers, such as Google Chrome, the links may not be expanded. In that case, I have included all the expanded version of the links in the below section.

My Personal Module: bp

Data Description

Data Visualization

Data Visualization using Plotly

EDA using Plotly

Miscellaneous Plots

Matplotib Styles

Deal with Colors

Statistics

Timeseries Analysis

Model Evaluation


A01: King County Seattle House Price Prediction (Regression)

GitHub

README

Statistics Report

a01 Data Processing

a02 Data processing Script

a03 Regression Statistics

a04 Regression EDA

a05 Regression EDA: bokeh

a06 Regression EDA: plotly

a07 Regression EDA: pixiedust

a08 Regression EDA: pandas profiling

b01 Regression Modelling (Boosting): Hist Gradient Boosting

b02 Regression Modelling (Boosting): XGBoost

b03 Regression Modelling (Boosting): LightGBM

b04 Regression Modelling (Boosting): CatBoost

e01 Regression Modelling (Ensemble): Stacking and Blending

m01 Regression Modelling (sklearn): linear and polynomial regression

m02 Regression Modelling (sklearn): sklearn methods

m03 Regression Modelling (sklearn): Random Forest

m04 Regression Modelling (statsmodels): linear OLS

s01 Regression Modelling (Special): pycaret

s02 Feature Engineering (Featuretools): XGBoost

s03 Feature Engineering (Featuretools): LightGBM

s04 Feature Engineering (Featuretools): CatBoost

w01 Model Interpretation: Yellowbrick, Lime, Eli5

w02 Model Interpretation: What If Tool (WIT)

w03 Model Interpretation: Dalex

w04 Model Interpretation: Dtreeviz

x01 Big Data Analysis: PySpark

x02 Big Data Analysis: PySpark Random Forest Tuning

y01 Deep Learning: Keras

z01 Best Model: CatBoost

z02 Best Model: XGBoost

z03 Best Model: Overall

A02: All State Insurance (Insurance: Regression)

GitHub

README

a01 Exploratory Data Analysis

a02 Data Processing

b01 Modelling

b02 Modelling Pyspark


Section B: Classification

BX.01: Fraud Detection (Binary Classification)

GitHub

README

Deploy End to End Machine Learning Model (Fraud Detection) on Heroku

a01 Classification EDA

a02 Classification Statistics

b01a Classification Modelling (Boosting): XGBboost

b01b Classification Modelling (Boosting): XGBboost (HPO)

b01c Classification Modelling (Boosting): XGBboost

b02 Classification Modelling (Boosting): LightGBM

b03 Classification Modelling (Boosting): Catboost

b03b Classification Modelling (Boosting): Catboost Custom Loss

e01 Classification Modelling (Ensemble): Stacking

m01 Classification Modelling (sklearn): Undersampling

m02 Classification Modelling (sklearn): Logistic Regression SMOTE

m03 Classification Modelling (sklearn): Decision Tree

m04 Classification Modelling (sklearn): Calibrated Classification

b05 Classification Modelling (sklearn): Isolation Forest and LOF

s01 Classification Modelling (Special): pycaret (lda)

s02 Classification Modelling (Special): evalML

x01 Classification Modelling (Big Data): dask

x02 Classification Modelling (Big Data): vaex

x03 Classification Modelling (Big Data): pySpark

y01 Classification Modelling (Deep Learning): keras simple model

y02 Classification Modelling (Deep Learning): keras large model

y03 Classification Modelling (Deep Learning): keras oversampling

y04 Classification Modelling (Deep Learning): keras classifier sklearn api

y05 Classification Modelling (Deep Learning): keras classifier (Hyperparameter tuning)

BX.02: Customer Churn (Binary Classification)

GitHub

README

a01 Exploratory Data Analysis

a01 Exploratory Data Analysis (Plolty)

a02 Customer Churn: Data Processing

bx01 Modelling (Boosting): XGBoost with HyperbandCV

bx02 Modelling (Boosting): XGBoost with Bayes Optimization

bl01 Modelling (Boosting): LightGBM Classifier with sklearn pipeline and HyperbandCV

bl02 Modelling (Boosting): LightGBM Classifier with Optuna HPO

bl03 Modelling (Boosting): LightGBM Classifier with Hyperopt HPO

bc01 Modelling (Boosting): CatBoostClassifier with optuna hyperparameter tuning

ml01 Modelling (Sklearn): LogisticRegression

ml02 Modelling (Sklearn): LogisticRegressionCV

splr01 Modelling (Special): (Pycaret) Logistic Regression

spn01 Modelling (Special): (Pycaret) Naive Bayes

spx01 Modelling (Special): (Pycaret) Xgboost

spdla01 Modelling (Special): (Pycaret) Linear Discriminant Analysis

sflr01 Modelling (Special): (featuretools) Logistic Regression

se01 Modelling (Special): (evalml) Built-in Algorithm

w01 Model Interpretation: (What If Tool) Logistic Regression

wbl Model Interpretation: (LOFO) Logistic Regression

w01 Model Interpretation: (Interpret) Builtin Estimators Logistic Regression and Boosting

y01 Deep Learning: (Keras) Sequential Simple Model

BX.03: Porto Seguro Auto Insurance (Binary Classification)

GitHub

README

a01 Exploratory Data Analysis

a02 Modelling: LightGBM

a03 Modelling: XGBoost

a04 Modelling: Keras Entity Embedding

a05 Modelling: Stacking different Models

a06 Feature Selection: Boruta and Target Permutation

BX.04: Breast Cancer Wisconsin (Binary Classification)

GitHub

README

a01 Exploratory Data Analysis

b01 Modlling: (Boosting) XGBoost

y01 Deep Learning: Keras Sequential with class_weight

y02 Deep Learning: Keras Sequential

BY.01: Prudential Insurance (Multiclass Classification)

GitHub

README

a01 Exploratory Data Analysis

a02 Multiclass Classification Statistics

a03 Data Preprocessing

a04 Data Preprocessing Script

b01 Modelling: Linear Regression

b02 Modelling: RF Classifier

b03 Modelling: RF Classifier AUC ROC

b04 Modelling: XGBoost Multiclass Classification

b05 Modelling: XGBoost Linear Regression and Poisson Regression with Offset

c01 Multiclass Model Interpretation: eli5, shap and pdpbox


Section C: Clustering

C01: Clinical Features and Biomarkers Analysis for Diabetes (Clustering)

a01 Data Preparation

a02 Statistical Study of Features

b01 Analysis of Clinical Features

b02 Analysis of Biomarkers

m01 Modelling: Diabetes Classification

m02 Modelling: Clustering

s01 Big Data: Modelling Diabetes Data Using Vaex


C02: Clustering of Grocery Items (Clustering)

Clustering of Grocery Items


C03: Clustering of Agriculture Data (Clustering)

Clustering of Agriculture Data


C04: Clustering Covid Samples Multiple Sequence Alignment (Clustering)

Clustering Covid Samples Multiple Sequence Alignment


Section D: Timeseries Analysis

D01: Timeseries Analysis for Web Traffic Data

GitHub

README

a01 Data Processing

b01 Timeseries visualization and eda

c01 Timeseries statistics

d01 Timeseries modelling: ARIMA

d02 Timeseries modelling: VAR

e01 Timeseries modelling: sklearn

f01 Timeseries modelling: tsfresh and xgboost

g01 Timeseries modelling: fbprophet

g02 Timeseries modelling: fbprophet holidays

h01 Timeseries modelling: deep learning


Section E: Natural Language Processing (NLP)

E01: Twitter Sentiment Analysis (Analytics Vidhya Hackathon: Identify the Sentiment)

GitHub

a00 README

a01 Text Data Processing

a02 Text Data EDA

a03 Scattertext for positive and negative sentiments

a03b Result: Twitter Sentiment Html

b01 Text Data Modelling: BoW + Word2Vec + TF-IDF

b02 Text Data Modelling: TF-IDF + Logistic Regression

c01 Sentiment Analysis: ktrain

c01 Sentiment Analysis: ktrain, neptune

c01 Sentiment Analysis: ktrain, neptune HPO

c02 Sentiment Analysis: simpletransformers + Roberta

d01 Sentiment Analysis: (keras) LSTM

d02 Sentiment Analysis: (keras) GRU, CNN, LSTM

e01 Sentiment Analysis: (transformers) Small data with torch and distilbert

e02 Sentiment Analysis: (transformers): Full data with keras and distilbert

e03 Sentiment Analysis: BERT and Tensorflow

e03 Sentiment Analysis: BERT, Tensorflow, and Neptune

E02: Toxic Comments (Multiclass Text Classification)

GitHub

README

a01 Text Data Processing

a02 Text Data EDA

a03 Text Data EDA: Plotly

m01 Text Data Binary Classification (Toxic or not)

s01 Named Entity Recognition and Dependency Parsing: spacy2

s01 Named Entity Recognition and Dependency Parsing: spacy3

y01 Deep Learning: GRU and Fasttext

y01b Deep Learning: GRU, Fasttext, Badwords

y02 Deep Learning: Transformers PyTorch BERT

y02b Deep Learning: Transformers PyTorch XLNET

y02c Deep Learning: Transformers PyTorch DisltilBert

y03 Bert Client: XGBoost

y03b Bert Client: Keras Sequential

E03: Consumer Complaints (Multiclass Text Classification)

GitHub

README

a01 Text Processing

a02 EDA for Text Data

b01 Text Data Modelling: Tf-idf and Sklearn Classifiers

b02 Text Data Modelling: LinearSVC

c01 Model Evaluation: Yellowbrick

c02 Model Evaluation: scikit-plot

d01 Text Data Modelling: PySpark

e01 Text Data Modelling: simpletransformers


Section F: Insurance Data Modelling

F01: French Motor Claims (Pure Premium Modelling)

GitHub

README

a01 Data Cleaning

b01 Frequency Modelling (Poisson Regressor)

b02 Severity Modelling (Gamma Regressor)

b03 Pure Premium Modelling (Tweedie Regressor)

b04 Tweedie Model vs FrequencySeverity Model

b05 Lorentz Curves Comparison

c01 Xgboost with Tweedie Regression

d01 GAM Linearized Modelling using Pygam


Section G: Financial Data Analysis

G01: Credit Risk (Banking: Financial Modelling (Scorecard))

GitHub

README

a01 EDA for Credit Risk Data

a02 Data Processing

b01 Risk Modelling: PDModel Gini KS CreditScore Scorecard



Chapter 2: SQL

2A: SQLITE Queries for Northwind Database (Book: SQL Practice Problems by Vasilik)

a01 Beginner Level Problems (1-19)

a02 Intermediate Level Problems (20-31)

a03 Advanced Level Problems (32-57)

2B.01: SQL Queries for Hospital Management Database

a01 SQL Queries using postgres

a02 SQL Queries using postgres, sqlalachemy and pandas

a03 SQL Queries using sqlite3


2B.02: SQL Queries for Computer Store Database

a01 SQL Queries using postgres

a02 SQL Queries using sqlite


2B.03: SQL Queries for Employee Management Database

a01 SQL Queries using postgres and pyspark


2B.04: SQL Queries for the Warehouse Database

a01 SQL Queries using postgres

a02 SQL Queries using pyspark and postgres


2B.05: SQL Queries for Movie Theaters Database

a01 SQL Queries using pyspark and postgres

a02 SQL Queries using pyspark and sqlite


2B.06: SQL Queries for Pieces and Providers Database

a01 SQL Queries using postgresql

a02 SQL Queries using pyspark, sqlite and sqlalchemy



Chapter 3: Business Projects

3.01: Spanish Translation A/B Testing

GitHub

README

a01 Spanish Translation A/B Testing with Extensive EDA and Statistical Tests

3.02: Customer Lifetime Value

GitHub

README

a01 Data Cleaning

b01 Modelling: BG/NBD and Gamma-Gamma Distribution

b02 Modelling: Keras Sequential and XGBoost




Chapter 4: Personal Module "bp"

The module "bp" expands pandas DataFrame API and adds various visualization and data analysis functionalities. For example, we can get a plot of a numeric column using the method "df.bp.plot_num("my_numeric_variable")".


Currently my module contains following methods:


1 2 3 4
BPAccessor hlp plot_daily_cat plotly_corr_heatmap
Plotly_Charts json plot_date_cat plotly_countplot
RandomColor light_axis plot_ecdf plotly_country_plot
add_interactions lm_plot plot_gini plotly_distplot
add_text_barplot lm_residual_corr_plot plot_ks plotly_histogram
adjustedR2 lm_stats plot_multiple_jointplots_with_pearsonr plotly_mapbox
hex_to_rgb magnify plot_num plotly_radar_plot
discrete_cmap multiple_linear_regression plot_num_cat plotly_scattergl_plot
display_calendar no_axis plot_num_cat2 plotly_scattergl_plot_colorcol
plot_plot_binn optimize_memory plot_num_num plotly_scattergl_plot_subplots
find_corr parallelize_dataframe plot_pareto plotly_usa_bubble_map
freq_count parse_json_col plot_roc_auc plotly_usa_map
get_binary_classification_report partial_corr plot_roc_skf plotly_usa_map2
get_binary_classification_scalar_metrics plot_boxplot_cats_num plot_simple_linear_regression point_biserial_correlation
get_binary_classification_scalar_metrics2 plot_cat plot_statistics print_calendar
get_column_descriptions plot_cat_binn plot_stem print_confusion_matrix
get_distinct_colors plot_cat_cat plot_two_clusters print_df_eval
get_false_negative_frauds plot_cat_cat2 plotly_agg_country_plot print_statsmodels_summary
get_high_correlated_features_df plot_cat_cat_pct plotly_agg_usa_plot random
get_mpl_style plot_cat_num plotly_binary_clf_evaluation regression_residual_plots
get_outliers plot_confusion_matrix_plotly plotly_boxplot remove_outliers
get_outliers_kde plot_corr plotly_boxplot_allpoints_with_outliers rgb2hex
get_plotly_colorscale plot_corr_style plotly_boxplot_categorical_column select_kbest_features
get_yprobs_sorted_proportions plot_corrplot_with_pearsonr plotly_bubbleplot show_methods





Chapter 5: Overview of My Projects (GIF Videos)


- Click on the box to show the GIF video. (The box moves down and GIF video plays above it.)
- Go to the buttom of the gif and click the same button again to hide the video.










comments powered by Disqus